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Abstract

The stability of the equilibria of time-invariant nonlinear dynamical systems with

discrete time scale is investigated. We present an elementary proof showing that in the

case of a stable equilibrium and continuously di�erentiable state transition function, all

eigenvalues of the Jacobian computed at the equilibrium must be inside or on the unit

circle. We also demonstrate via numerical examples that if some eigenvalues are on the

unit circle and all other eigenvalues are inside the unit circle, then the equilibrium maybe

unstable, or marginally stable, or even asymptotically stable, which show that the

necessary condition cannot be further restricted in general. In addition, the necessary

condition is given in terms of spectral radius and matrix norms. Ó 1999 Elsevier Sci-

ence Inc. All rights reserved.

1. Introduction

Stationary dynamical systems with discrete time scale can be written as

xk�1 � T�xk�; �1�
where xk is the state of the system at time period k, and T is the state-transition
function. Let X � Rn and R�T� � X . For any initial state x0 2 X , Eq. (1)
uniquely determines the state trajectory, xk, k P 0.
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A state �x 2 X is called an equilibrium of system (1), if

�x � T��x�; �2�

that is, the equilibria of system (1) and the ®xed points of mapping T are
equivalent to each other.

An equilibrium �x is called stable or marginally stable if for arbitrary � > 0,
there is a d > 0 such that kx0 ÿ �xk < d implies that for all k P 0, kxk ÿ �xk < �.
An equilibrium is asymptotically stable if it is marginally stable and there exists
a D > 0 such that kx0 ÿ �xk < D implies that xk ! �x as k !1. An equilibrium
is globally asymptotically stable if it is marginally stable and xk ! �x as k !1
with arbitrary initial state x0 2 X .

There are many su�cient conditions for the marginal, asymptotical, or
global asymptotical stability of an equilibrium. Criteria based on Lyapunov
functions are discussed in almost all textbooks on dynamical systems theory
(see, for example, [1]). Recently, Li et al. [2] have developed necessary stability
conditions based on Lyapunov functions.

In this paper we will focus on criteria based on the spectral properties of
the Jacobian of the state transition function. It is well known that if �x is an
interior point and T is continuously di�erentiable in the neighbourhood of �x
and all eigenvalues of J��x� (which is the Jacobian at the equilibrium) are
inside the unit circle, then �x is asymptotically stable. Necessary stability
conditions have been obtained by using stable-unstable manifold theory [3],
and some of the conditions can be stated in an elementary way. However, no
elementary proofs of these results are o�ered in the literature. In this paper we
present an elementary proof showing that if �x is marginally stable, then all
eigenvalues of J��x� must be on or inside the unit circle. Since asymptotical
stability implies marginal stability, this necessary condition applies also to
asymptotically stable equilibrium as well. Via numerical examples we will also
demonstrate that in the case when some eigenvalues have unit absolute values
and all other eigenvalues are inside the unit circle, then �x can be either un-
stable, or marginally stable, or even asymptotically stable showing that the
necessary condition cannot be further restricted. In the last section of the
paper the necessary condition will be derived in terms of spectral radius and
matrix norms.

2. A necessary condition for stability

Before formulating the main theorem of this paper, some preliminary results
are presented.
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Lemma 2.1 (A canonical form of a real matrix). For l � 1; 2; . . . ; denote

Nl �

0 1

0 1

. .
. . .

.

0 1

0

0BBBBBB@

1CCCCCCA
l�l

; Ml �

1 1

1 1

. .
. . .

.

1 1

1

0BBBBBB@

1CCCCCCA
l�l

;

and

L2l �
�cos hl�Ml � sin hl�Ml

ÿ� sin hl�Ml �cos hl�Ml

0B@
1CA

2l�2l

:

For every real square matrix A, there is a nonsingular real matrix P such that

K � PAPÿ1

� diag�Ne1
; . . . ;Ner ; kr�1Mer�1

; . . . ; kr�sMer�s ; jsr�s�1jL2er�s�1
; . . . ; jsr�s�tjL2er�s�t �;

where Nei �16 i6 r� are the blocks corresponding to the zero eigenvalue, kiMei

�r � 16 i6 r � s� are the blocks corresponding to the real eigenvalues ki, jsijL2ei

�r � s� 16 i6 r � s� t� are the blocks corresponding to the nonreal eigenvalues
si.

Proof. The following proof is based on Ref. [4].
Any matrix is similar to its Jordan form. If there are zero eigenvalues, then

the Jordan blocks corresponding to them are Ne1
; . . . ;Ner . Any Jordan block

corresponding to any nonzero eigenvalue k can be transformed as

1

k

. .
.

klÿ2

klÿ1

0BBBBBB@

1CCCCCCA

ÿ1 k 1

k 1

. .
. . .

.

k 1

k

0BBBBBB@

1CCCCCCA

�

1

k

. .
.

klÿ2

klÿ1

0BBBBBB@

1CCCCCCA � kMl:

Therefore all Jordan blocks corresponding to real nonzero eigenvalues are
similar to kr�1Mer�1

; . . . ; kr�sMer�s .
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The characteristic polynomial of any real matrix A is a real polynomial, so
are its invariant factors. Then any nonreal elementary factor and its conjugate
factor must appear in pairs. The above discussion implies that all Jordan
blocks of A corresponding to nonreal eigenvalues must be similar to matrix

diag�sr�s�1M2er�s�1
;�sr�s�1M2er�s�1

; . . . ; sr�s�tM2er�s�t ;�sr�s�tM2er�s�t�:
Notice that with the notation sl � jslj�cos hl � i sin hl�,

Il ÿiIl

Il iIl

 !
�jsljL2l�

Il ÿiIl

Il iIl

 !ÿ1

� jslj
Il ÿiIl

Il iIl

 ! �cos hl�Ml � sin hl�Ml

ÿ� sin hl�Ml �cos hl�Ml

0B@
1CA Il ÿiIl

Il iIl

 !ÿ1

� slMl

�slMl

 !
:

Since A and k are real, they are real similar. �

Lemma 2.2. Suppose fxk: k � 0; 1; 2; . . .g is the trajectory of a discrete dynamic
system obtained by xk�1 � T�xk� in X � Rn. Let P be a nonsingular real matrix.
Then under the linear transformation P: y �def

P�x� � Px; the image of the
original dynamical system is a discrete dynamical system in Y �def

P�X � obtained
by yk�1 � h�yk�; where h � P � T �Pÿ1. In particular, if T 2 C1�X �; then
h 2 C1�Y �.

Proof. The assertion follows from relation

yk�1 � Pxk�1 � PT�xk� � PT�Pÿ1yk� � �P � T �Pÿ1��yk�;
for k � 0; 1; 2; . . . In particular, if T 2 C1�X �, then using the chain rule of
di�erentiation, we see that h 2 C1�Y �. �

Lemma 2.3. Stability (or asymptotical stability) of an equilibrium is preserved
under linear transformation. Namely, �x is a stable (or asymptotically stable)
equilibrium of a dynamic system xk�1 � T�xk� in X � Rn if and only if under the
linear transformation P: y �def

P�x� � Px where P is a nonsingular real matrix,
�y �def

P�x is a stable (or asymptotically stable) equilibrium of the dynamical system
yk�1 � �P � T �Pÿ1��yk�.

Proof. Notice that

kyk ÿ �yk � kPxk ÿ P�xk � kP�xk ÿ �x�k6 kPk kxk ÿ �xk;
and
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kxk ÿ �xk � kPÿ1yk ÿ Pÿ1�yk � kPÿ1�yk ÿ �y�k6 kPÿ1k kyk ÿ �yk;
from which the assertion follows immediately. �

Lemma 2.4. Let Nl, Ml and L2l be de®ned as in Lemma 2.1. Then for k �
1; 2; . . . ;

Nk
l �

Matrix with the only nonzero entries 1 on the

upper �k � 1�th subdiagonal if k < l;

O �zero matrix� if k P l;

8><>:

Mk
l �

C0
k C1

k C2
k � � � Clÿ1

k

C0
k C1

k � � � Clÿ2
k

. .
. . .

. ..
.

C0
k C1

k

C0
k

26666666664

37777777775
l�l

;

Mÿk
l �

C0
kÿ1 ÿC1

k C2
k�1 � � � �ÿ1�lÿ1Clÿ1

k�lÿ2

C0
kÿ1 ÿC1

k � � � �ÿ1�lÿ2Clÿ2
k�lÿ3

. .
. . .

. ..
.

C0
kÿ1 ÿC1

k

C0
kÿ1

26666666664

37777777775
l�l

;

where Ci
k is the binomial number k

i

ÿ �
;

Lk
2l �

�cos khl�Mk
l � sin khl�Mk

l

ÿ� sin khl�Mk
l �cos khl�Mk

l

264
375

2l�2l

;

Lÿk
2l �

�cos khl�Mÿk
l ÿ� sin khl�Mÿk

l

� sin khl�Mÿk
l �cos khl�Mÿk

l

264
375

2l�2l

:

Proof. Easy calculation and ®nite induction can be applied to show these
relations. For example, in showing the closed form representation for Mÿk

l
using induction we need the identity

C0
kÿ1 � C1

k � � � � � Cl
k�lÿ1 � Cl

k�l;

which follows immediately from the repeated application of the additive
property of the binomial numbers, since
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C0
kÿ1 � C1

k � � � � � Cl
k�lÿ1 � �C0

k � C1
k � � � � � � Cl

k�lÿ1

� �C1
k�1 � C2

k�1� � � � � � Cl
k�lÿ1 � � � � � Clÿ1

k�lÿ1 � Cl
k�lÿ1 � Cl

k�l: �

Corollary 2.5. Let k:k1 denote the column-norm of real or complex matrices.
Then for k � 1; 2; . . .,

kNk
lk16 1 < lklÿ1; kMk

lk16 lklÿ1; kMÿk
l k16 l�k � lÿ 2�lÿ1

;

kLk
2lk16 �jcos khlj � j sin khlj�kMk

lk16
���
2
p
kMk

lk16
���
2
p

lklÿ1 < 2lk2lÿ1;

kLÿk
2l k16 �jcos khlj � j sin khlj�kMÿk

l k16
���
2
p
kMÿk

l k1

6
���
2
p

l�k � lÿ 2�lÿ1 < 2l�k � 2lÿ 2�2lÿ1:

We are now able to formulate the main result of this paper.

Theorem 2.6. Let X be a convex open set in Rn. Assume that for mapping
T 2 C1�X �, R�T� � X ; and the discrete dynamical system xk�1 � T�xk� has an
equilibrium �x 2 X . Then the necessary condition for the stability of �x is that the
absolute values of the eigenvalues of J � �oT=ox�jx��x; the Jacobian of T at �x; are
less than or equal to one.

Proof. Since translations do not change the Jacobian of T and preserve the
stability of an equilibrium, we may assume that X contains 0 and �x � 0. If
�x 6� 0, then introduce the new state variable x0 � xÿ �x.

Let k1; k2; . . . ; kn be the eigenvalues of J. Let a � maxfjk1j; jk2j; . . . ; jknjg and
assume that a > 1. De®ne

b � ÿ1; if jk1j � jk2j � � � � � jknj � a;

maxffjk1j; jk2j; . . . ; jknjg n fagg; otherwise:

�
By Lemma 2.1, there exists a nonsingular real matrix P such that

PJPÿ1 � K, where K is of the form as given in Lemma 2.1. Since interchanging
the same rows and columns does not a�ect the similarity of matrices, we can
write ~K in the following form obtained by rearranging the orders of the di-
agonal blocks of K:

~K � QJQÿ1 � diagfl1Bf1
; l2Bf2

; . . . ; lpBfp ; . . . ; lqBfqg;
where Q is real and nonsingular; 16 p6 q; for all i (16 i6 q), Bfi is an fi � fi

matrix in form of either Nfi , Mfi or Lfi (in the last case, fi is even); jlij � a for
16 i6 p, jlij6b for p � 16 i6 q. (For blocks corresponding to zero eigen-
values we can select lj � 1 and Bfj � Nfj .) Obviously, p � q corresponds to the
case when b � ÿ1.

Introduce the notation ~Bfi � diagfO; . . . ;O;Bfi ;O; . . . ;Og for 16 i6 q.
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We will next de®ne a norm in Rn. For any z 2 Rn, we can uniquely write

z � �z�1 � �z�2 � � � � � �z�q;
where �z�i is the component vector of z associated to the block Bfj in ~Bfi ,
16 i6 q. Therefore �z�i is an fi-dimensional vector. Let k:k1;j denote the l1-
norm in Rj, 16 j <1. De®ne k:k as follows:

kzk � k�z�1k1;f1
� k�z�2k1;f2

� � � � � k�z�qk1;fq
:

Clearly, k:k well de®nes a norm, and it coincides with the l1-norm in Rn. Note
that the column-norm of a matrix is compliant to the l1-norm of a vector space.

Let f � maxff1; f2; . . . ; fqg. Recall that for any positive a, b, c such that
a > maxf1; bg, we have limk!1 �ak=bk� � �1 and limk!1 �ak=kc� � �1.
Notice that a > maxf1;bg. Therefore, there is a positive integer k0, such that

ak0

f �k0 � f ÿ 2�fÿ1
ÿ 2 > maxf4; bk0 f kfÿ1

0 � 2g:
(This is also true when b � ÿ1 with an odd value of k0.)

Let S � Tk0 , then the state trajectory of the dynamical system zk�1 � S�zk�
with z0 � x0 in X is a subsequence of the state sequence of the original system
xk�1 � T�xk�. By the chain rule of di�erentiation,

oS

ox
�x� � oTk0

ox
�x� � oT

ox
�Tk0ÿ1�x�� oT

ox
�Tk0ÿ2�x�� � � � oT

ox
�T�x�� oT

ox
�x�:

Note that �x � 0 is a ®xed point of T, therefore

oS

ox
�0� � oT

ox
�0�

� �k0

� Jk0 :

Now we perform the linear transformation P: X 7! Y �def
P�X �, by

y �def
P�x� � Qx. By Lemmas 2.2 and 2.3, the dynamic system yk�1 � h�yk� has

a stable equilibrium �y � 0, where h � P � S �Pÿ1 is continuously di�erentia-
ble. The Jacobian of h at 0 is

oh

oy
�0� � Q

oS

ox
�0� Qÿ1 � QJk0 Qÿ1 � ~K

k0
:

By the local linearization of h, we have

h�y� � h�0� � oh

oy
�0� �yÿ 0� � o�kyk� � ~K

k0
y� o�kyk�:

Hence there exists a d > 0 such that whenever kyk < d,

kh�y� ÿ ~K
k0

yk < kyk: �3�
De®ne

B � fy: kyk < dg;
and
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C �
fy: k�y�1k1;f1

� � � � � k�y�pk1;fp

> k�y�p�1k1;fp�1
� � � � � k�y�qk1;fq

g if p < q;

Y if p � q:

8><>:
Note that C can be rewritten as

C �
fy: k�y�1k1;f1

� � � � � k�y�pk1;fp

> 1
2
kyk > k�y�p�1k1;fp�1

� � � � � k�y�qk1;fq
g if p < q;

Y if p � q:

8><>:
From now on, we only consider the case when p < q since the case of p � q

can be treated similarly.
Select any y� 2 B \ C. From inequality (3) and the construction of k:k we

have Xq

i�1

k�h�y���i ÿ �~K
k0

y��ik1;fi
< 2
Xp

i�1

k�y��ik1;fi
:

So Xp

i�1

k�h�y���i ÿ �~K
k0

y��ik1;fi
< 2
Xp

i�1

k�y��ik1;fi
;

and Xq

i�p�1

k�h�y���i ÿ �~K
k0

y��ik1;fi
< 2
Xp

i�1

k�y��ik1;fi
:

Let f � maxff1; f2; . . . ; fqg. By the triangle inequality and the corollary of
Lemma 2.4 we haveXp

i�1

k�h�y���ik1;fi
>
Xp

i�1

k�~Kk0
y��ik1;fi

ÿ 2
Xp

i�1

k�y��ik1;fi

�
Xp

i�1

klk0
i

~B
k0

fi
�y��ik1;fi

ÿ 2
Xp

i�1

k�y��ik1;fi

� ak0

Xp

i�1

k~Bk0

fi
�y��ik1;fi

ÿ 2
Xp

i�1

k�y��ik1;fi

P ak0

Xp

i�1

k�y��ik1;fi

k~Bÿk0

fi
k1

ÿ 2
Xp

i�1

k�y��ik1;fi

P ak0

Xp

i�1

k�y��ik1;fi

fi�k0 � fi ÿ 2�fiÿ1
ÿ 2
Xp

i�1

k�y��ik1;fi

P
ak0

f �k0 � f ÿ 2�fÿ1

"
ÿ2

#Xp

i�1

k�y��ik1;fi
;

and by using the corollary of Lemma 2.4 again we see that
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Xq

i�p�1

k�h�y���ik1;fi
<
Xq

i�p�1

k�~Kk0
y��ik1;fi

� 2
Xp

i�1

k�y��ik1;fi

�
Xq

i�p�1

klk0
i

~B
k0

fi
�y��ik1;fi

� 2
Xp

i�1

k�y��ik1;fi

6 bk0

Xq

i�p�1

k~Bk0

fi
�y��ik1;fi

� 2
Xp

i�1

k�y��ik1;fi

6 bk0

Xq

i�p�1

k~Bk0

fi
k1k�y��ik1;fi

� 2
Xp

i�1

k�y��ik1;fi

6 bk0

Xq

i�p�1

fik
fiÿ1
0 k�y��ik1;fi

� 2
Xp

i�1

k�y��ik1;fi

6 bk0 fkfÿ1
0

Xq

i�p�1

k�y��ik1;fi
� 2
Xp

i�1

k�y��ik1;fi

6 bk0 fkfÿ1
0

Xp

i�1

k�y��ik1;fi
� 2
Xp

i�1

k�y��ik1;fi

� �bk0 fkfÿ1
0 � 2�

Xp

i�1

k�y��ik1;fi
:

By the choice of k0, we haveXp

i�1

k�h�y���ik1;fi
>
Xq

i�p�1

k�h�y���ik1;fi
;

and furthermore,

kh�y��k >
Xp

i�1

k�h�y���ik1;fi
>

ak0

f �k0 � f ÿ 2�fÿ1
ÿ 2

" #Xp

i�1

k�y��ik1;fi

>
1

2

ak0

f �k0 � f ÿ 2�fÿ1
ÿ 2

" #
ky�k > 2ky�k : �4�

Thus, h�y�� 2 C, and h�y�� is away from the equilibrium at least twice as much
as y�.

Assume that the zero equilibrium is stable. Then there is a positive �6 d such
that if ky0k < � then for all k P 0, kykk < d. If one selects a nonzero y0 2 C
such that ky0k < �, then inequality (3) holds for all yk and obviously,
yk 2 B \ C. However, from relation (4) we conclude that

kykk > 2 kykÿ1k > � � � > 2k ky0k;
which tends to 1 as k !1. This contradicts the selection of �. Hence the
proof is completed. �
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Corollary 2.7. Since asymptotical stability implies marginal stability, Theorem
2.6 holds also for any asymptotically stable equilibrium.

We know that if all eigenvalues of J are inside the unit circle, then the
equilibrium is asymptotically stable. If some eigenvalues are on the unit circle
and all others are inside the unit circle, then the equilibrium may be unstable
and in some cases may be marginally stable, or even asymptotically stable as it
is illustrated in the following examples.

Example 2.8. Consider the linear system

xk�1 � Axk

with xk � �xk1; xk2�T and

A � 1 1

0 1

� �
:

It is easy to see that for k P 0,

Ak � 1 k

0 1

� �
and therefore

xk � Akx0 �
x01 � kx02

x02

� �
:

If x02 > 0, then xk1 !1. Hence the zero equilibrium is unstable.

Example 2.9. Consider the single dimensional linear system

xk�1 � ÿxk

with a unique equilibrium �x � 0. Since for k P 0, xk � �ÿ1�kx0, the equilibrium
is stable and the stability is not asymptotical.

Example 2.10. Consider now the single dimensional nonlinear system

xk�1 � g�xk�
with

g�x� � xeÿx2

;

which has a unique equilibrium �x � 0. The Jacobian of g at �x has unique ei-
genvalue 1. Since jxkj is decreasing in k and bounded by zero, a � limk!1 jxkj
exists and is ®nite. Moreover, it satis®es the equation a � aeÿa2

, which implies
a� 0. By the monotonicity and convergence of jxkj we conclude that the zero
equilibrium is asymptotically stable.
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3. Stability and matrix norms

In this section, we will apply the spectral theory in ®nite dimensional spaces
to reveal some interesting connections between stability and matrix norms.

Let A be a real or complex n� n matrix. Let the eigenvalues of A be denoted
by k1; k2; . . . ; kn. The spectral radius of matrix A is de®ned as

rr�A� � maxfjk1j; jk2j; . . . ; jknjg:
It is well known that for all induced matrix norms,

rr�A�6 kAk
(see for example, Ref. [5] or [6].)

There are many special spectral properties of real or complex matrices
known from the literature. The following lemmas are given in Ortega and
Rheinboldt [7].

Lemma 3.1. Let k:k be an arbitrary norm on Rn (or Cn) and P an arbitrary
nonsingular, n� n; real (or complex) matrix. Then the mapping de®ned by
x 7! kxk0 � kPxk; for all x 2 Rn (or Cn), is a norm on Rn (or Cn). Moreover, if
A is a real (or complex) n� n matrix, then the induced matrix norm is given as

kAk0 � kPAPÿ1k:

Proof. It is simple to verify that k:k0 is a norm. The second part of the lemma
follows from equality

kAk0 � sup
kxk0�1

kAxk0 � sup
kPxk�1

kPAxk � sup
kyk�1

kPAPÿ1yk � kPAPÿ1k: �

Lemma 3.2. Let K be the Jordan form of an n� n matrix A. Then for arbitrary
� > 0; A is similar to a matrix K̂ which is identical to K except that each o�-
diagonal 1 is replaced by �.

Proof. Without loss of generality we may assume that K is an n� n Jordan
block. Let D be the diagonal matrix diag�1; �; . . . ; �nÿ1�, then Dÿ1KD � K̂.
Hence, A is similar to K̂: �

Lemma 3.3. Let A be an n� n matrix. Then for arbitrary � > 0, there is a norm
on Cn such that for the induced matrix norm,

kAk6 rr�A� � �:

Proof. Let K̂ be the modi®ed Jordan form of A as given in Lemma 3.2. Then
the column-norm of K̂ satis®es relation kK̂k16 rr�A� � �, and using Lemma
3.1, the result follows. �

The main result of this section can be formulated as follows.
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Theorem 3.4. Let A be an n� n real or complex matrix. Then

rr�A� � inf fkAk: k:k is any induced matrix norm on Cng:
Furthermore, if all the Jordan blocks of A corresponding to the eigenvalues with
largest absolute value have size 1� 1; then rr�A� � kAk with some matrix norm;
otherwise, rr�A� < kAk for all matrix norms.

Proof. The ®rst part of the theorem follows immediately from Lemma 3.3.
Suppose that all the Jordan blocks corresponding to the eigenvalues of A

with largest absolute value have size 1� 1. If A is diagonable, then take the
column-norm of the diagonal Jordan form of A. Then it equals rr�A�, and is a
norm of A by Lemma 3.1. If A is not diagonable, then there must be some
other eigenvalues of A with Jordan blocks with sizes more than 1� 1. Let b be
the maximum of the absolute values of all other eigenvalues of A. Then
rr�A� > b. Take � � rr�A� ÿ b, and apply Lemma 3.2 to each Jordan block of
A with this � to obtain the modi®ed Jordan form K̂ for A. Then kK̂k1 � rr�A�,
which is a norm of A by Lemma 3.1.

Suppose that there is an m� m (m P 2) Jordan block of A corresponding to a
dominant eigenvalue k. If k � 0, then the assertion is obvious, since for any
A 6� O, kAk > 0 for all norms. Assume next that k 6� 0. Let e1; e2; . . . ; em be the
natural basis of the coordinate space corresponding to this Jordan block. Then
A�x1e1 � x2e2� � �kx1 � x2�e1 � kx2e2. Assume that there is some norm k:k such
that kAk � supkxk6�0�kAxk=kxk� � rr�A�. Then for all vectors x,
kAxk6 rr�A�kxk. We will show that this is impossible. Let x � x1e1 � x2e2, then

k�kx1 � x2�e1 � kx2e2k6 rr�A�kx1e1 � x2e2k
for all complex x1 and x2. Let x1 � m (m � 1; 2; . . .) and x2 � k, then we see that

k�m� 1�ke1 � k2e2k6 rr�A�kme1 � ke2k:
Since rr�A� � jkj > 0,

k�m� 1�e1 � ke2k6 kme1 � ke2k:
This relation implies that for all M P 2,

kMe1 � ke2k6 k�M ÿ 1�e1 � ke2k6 � � � 6 ke1 � ke2k;
and division by M yields

e1 � k
M

e2

 6 1

M
e1 � ke2k k:

Letting M !1 and using the continuity of vector norms we have ke1k6 0,
which is impossible since with any vector norm, ke1k > 0.

Thus, the proof is completed. �

From Theorems 2.6 and 3.4, we have the following interesting result.
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Corollary 3.5. Assume that all conditions of Theorem 2.6 hold. Then for a stable
equilibrium, the spectual radius of J, the Jacobian of the transition function at the
equilibrium, must not be greater than 1. Furthermore, if all the Jordan blocks of J

corresponding to the eigenvalues with largest absolute value have size 1� 1; then
there exists some matrix norm such that kJk6 1.

The result of Corollary 3.5 cannot be further extended, as it is illustrated in
the following example which provides a nonlinear discrete dynamic system
with an asymptotically stable equilibrium and with all matrix norms of the
Jacobian of the transition function at the equilibrium being strictly greater than
one.

Example 3.6. Consider the dynamical system zt�1 � T�zt�, where z � �x; y�T 2
R2 and

T�z� � xeÿx2 � yeÿy2

yeÿy2

 !
: �5�

The equilibrium is the solution of equations

x � xeÿx2 � yeÿy2

; y � yeÿy2

:

From the second equation we see y � 0, and then the ®rst equation implies that
x � 0. Thus, the unique equilibrium is �z � 0.

Notice that

T0�z� � ÿ2x2eÿx2 � eÿx2 ÿ2y2eÿy2 � eÿy2

0 ÿ2y2eÿy2 � eÿy2

 !
;

therefore

J � T0��z� � 1 1

0 1

� �
:

Then by Theorem 3.4, any norm of J is strictly greater than 1.
Next we show that the equilibrium of the system generated by Eq. (5) is

asymptotically stable. We can write this system as

xt�1 � xte
ÿx2

t � yte
ÿy2

t � xte
ÿx2

t � yt�1;

yt�1 � yte
ÿy2

t :

Let f �x� � xeÿx2
. Since f 0�x� � eÿx2 � xeÿx2�ÿ2x� � eÿx2�1ÿ 2x2�, f is strictly

increasing in �0; 1= ���
2
p �.

De®ne next g�x� � xÿ f �x�. Then g0�x� � 1ÿ eÿx2�1ÿ 2x2� > 1ÿ eÿx2
> 0

for x 2 �ÿ1;1�, that is, g increases for x 2 �ÿ1;1�.
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Select any initial state �x0; y0�. First we show that yt ! 0 as t!1. Since
jyt�1j � jytjeÿjyt j2 6 jytj, sequence jytj is convergent. If y� denotes the limit, then
the recursion implies that y� � y�eÿy�2 showing that y� � 0.

Select now an arbitrary � 2 �0; 1= ���
2
p �, and denote d � g���. Then d > 0.

Since yt ! 0, there is an N such that jytj < minf�; dg � d as t P N .
Assume ®rst that for some t P N , jxtj < �. Then

jxt�1j6 jxtjeÿjxt j2 � jyt�1j < f ��� � d � f ��� � g��� � f ��� � �ÿ f ��� � �:
�6�

Assume next that with some t P N , jxtjP �. Then

jxt�1j6 jxtjeÿjxt j2 � jyt�1j < f �jxtj� � d � f �jxtj� � g���
6 f �jxtj� � g�jxtj� � jxtj:

Now we show that there is a t�P N such that jxt� j < �. Assume not, then
jxtjP � for all t P N . Since sequence jxtj is decreasing when t P N , it converges
to a limit x�. Letting t!1 in the recursion of xt and using the fact that yt ! 0
we have

x� � x�eÿx�2 � 0

implying that x� � 0 which contradicts the assumption. From the previous
derivation we also see that for all t P t�, jxtj < �.

In summary, if t P t�, then jxtj < �, jytj < �, proving that both sequences
converge to zero.

The above derivation also implies that the zero equilibrium is stable. Select
any � 2 �0; 1= ���

2
p �, and de®ne d � g��� > 0. If jx0j < d and jy0j < d, then it is

easy to show that for all k P 0, jxtj < � and jytj < �. The monotonicity of se-
quence jytj implies that jytj < d < �. Inequality jxtj < � can be proven by in-
duction using inequality (6), since for k � 0 it holds, and the induction step is
given by relation (6).

Remark. We can easily extend this example to any dimension n P 2 such that
the equilibrium is asymptotically stable and the Jacobian at the equilibrium is a
Jordan block with size n� n. Just consider the dynamic system xt�1 � T�xt�,
where x � �x1; x2; . . . ; xn�T 2 Rn and

T�x� �

x1eÿx2
1 � x2eÿx2

2

x2eÿx2
2 � x3eÿx2

3

..

.

xnÿ1eÿx2
nÿ1 � xneÿx2

n

xneÿx2
n

0BBBBBBB@

1CCCCCCCA:
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The unique equilibrium is �x � 0. The Jacobian of T at this equilibrium is the
n� n Jordan block with unit eigenvalue. Similarly to the discussion given in
Example 3.6, we ®rst show that component xn is stable and converges to zero.
Then the same is shown for xnÿ1, and then for xnÿ2, and so on, and ®nally for x1.
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